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ABSTRACT: The problem of estimating the trajectorias of an
unknown number of contacts in a multisensor-multicontact
anvironment is considered. The data consists of independent
and nonassociated estimates or features extracted from
locally associated measurements. To avoid the computational
ditficuities of maximum likelihood estimation, a3 clustering
or decision-directed approach to unsupervised learnirg is
employed. Data samples are clusisred and trajectory
astimates formed via a hisrarchical trae with a critarion for
dentifying an estimate of the number of clusters or contacts.
Complications arise when system observability poses a
probiem. An algorithm is presented for scenarios where two
independent data segmants are required for observability.
The estimation technique manages the assignment of the data
segments by delaying decisions and converting decision
making 1o the rasolution of conflicts. Ar :ample of such a
oroblem, the simultaneous estimation o irajectories from
ocally— associated/globally-nonassociated angie-of- arrivai
data. is detalled and experimental resuits presented.

KN

I.  Proplem Otatement

This t)aper is concerned with
simuitaneously estimaling the parameters of
an unknown number of dynamic systems. The
data is comprised of independent and
nonassociated samples. The probiem is
illustrated in Fig. 1, where it is desired to
estimate the state or initial conditions of
known dynamic systems. This problem, further
detailed in Fig. 2a, is typical of trajectory
estimation in_a multisensor-muiticontact
environment. The measurement environment
involves unlabelled samples and, generaily, no
prior knowledge of the parameter set or the
number of contacts is available. An aiternate
problem, typical of texture anal Fys:s and image
segmentation, is illustrated in Fig. 2b. This

problem, where the desired x; are the ARMA or
Markov parameters, is detall'ad in {1]. In the
trajectory estimation problem, the

measurements received at various sensors may
fade from one contact to another providing
uniabelled data streams. The data is assumed
to be locatly associated {supervised)
permitting retention of the information, most
critical to the task at hand. in a reduced data
set; e.9., sufficient statistics or features. This
data set A = (a,, a,) is realized
through local processmg c?f the raw data, y (k).
The probability of a given data stream
onginating with a particular system .s not
<nown a priori. The problem is then. gnven a
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data set A w»th knqwn probability structures.
find x = (x, . x.)' where ¢ is the estimated
number of con acts.

841-3846

II. Mathematical Formulation

For data streams with a large number of
samples, the local estimate i$ approximately
Gaussian with mean a;, and Fisher information
matrix  F, [1-3]. It 'each local estimate is
labelied (supervused) then the measurements
associated with a given system can be
clustered and the likelihood function is given
by

P(A|x) = n

]-

m p(alx,)] (1)

where A rePresents the cluster associated
with L system. For simplicity
presentatlon it ns assumed that a; 1s 3 girec:
measure of the x; extension to the more
general problem fdilows readily. Thus, the
maximum likelihood soiution ftor this problem
is given Dy

z

ageA

in

Fi (ai- xi) -0
j

(2

for i « 1,2,...,c. When the giobal association is
not known (unsupervnsed samples), attention
focuses on the mixture density

c
plai) = Z play) plajix;o). (3)
j=

and

p(Ajx) = T

e

pla|x), (4)

is associated with
the p w;) are mixing
(probability of the event w). When
¢ and plw;) are known, it is readily sh wn ‘42 =)
that the rhaximum likelihood estimate (MLE) s
3Jiven by the solution to the c-coupled equations

where w; is the event that a;,
the jth 'system and
paramaters




pX wila;.x) Fla;: x) =0, (5)
aeA

where w.(a;x) = p (w;ja;x) has the effect ot
windowing away data hof in the vicinity of x.
It is instructive 1o view the form of w, (a,

for two identically Gaussian distributed
Clusters with means x, = -@/2 and x, = d/2,and

variance oZ. For this case w,(a) = [1 + exp (% : %— )]" .

and the transition from the asymptotic value of
1 for negative a to the asymptotic vaiue of zero
for positive a is seen to be abrupt for large
relative separations of the cluster centers

(d = x5 - %y >» g). Thus, under these conditions
the problem reduces to one of partitioning A
into C disjoint subsets A; A ..A., each
reprosenting a cluster with™ "mMost “similar”
samples. he more difficuit problem of close
or overlapping clusters requires maximization
of the mixture density. In generalizing the
siotlsm (¢ include unknown mixture para-

meters the constraints p (w;) 20, Zp Smj) -1
are imposed. Maximizatvon of (4) 'is a
noniinear 1terative process that is

computationally intensive and concern exists
regarding the convergence to a global solution.
With ¢ aiso unknown, the alternative approach
of employing a decision-directed or clustering
procedure IS attractive ({1,4]. Criteria for
measuring the quality of the data partitioning
is critical t© the overall performance [4]. To
evaiuate a partitioning R = [A,, A;,...A ], the
criterion

€ n
> 4 P(Gil"j-Al)]

=¥ n

p(AIR) ~ & [
QEA;

(6)

was suggested (1], where n is the totai number
of measurements, n, is the number of
measzu)remems assigned if A and x; is obtained
via (2).

Hi. W

To begin the estimation or data fusion
process, we smpioy the insight gained in the
previous section on the natural way w, (o, x)
tends to partition the measurement &pace.
Hence, we seek a partition that minimizes the
criterion

E 2
2al X o xil
L J

i (7)

Note the relaticnship of (7), using unlabeiled
data, to the 109 likelihnood associated with the
distribution in (1). Note, also, that the problem
IS complicated for unknown ¢ by the fact that

increasing the number of clusters
manotonically decreases of. Crteria tor gen-

tifying an estimate for ¢ is discussed later
A hierarchical approach 10 minimizing o2
w

is to combine nearest naighbors, by an
appropriate metric, into a new point (cluster)
and continue the process untii all points have
been combined. Thus, a hierarchical tree is
formed starting with n (singleton) clusters.
that reduces the number of clusters by one at
each step. At each step the criterion (7) is
minimized and, therefore, for any selection of
C, an appropriate partition is achieved.

1t is readily shown that the metric that
achieves the above result is

2 o mi w2 -
dmin r(n,n e - il b i 8)
where
L e
fu=[ R +FT] T \9)

Here. the points x, and x, with Fisher matrnces
F,.and F, are combined and replaced by the rew
point

xk, - Fk|'1 [Fkxk +* lel] - Xk + Fk‘.1 F.§X| 10)
and new Fisher matrix
Fa=Fy+ F,. (11

With the use of rough screening tests. these
computations can be kept reasconable. In tms
manner, global estimates, x. for each ot 'ne
‘ormed clusters are automatidally computed in
the agglomerative process, see Fig. 3.

V. Befined Clustering and Estimation Algo-
athms

Selecting a criterion tunction is critical
to both cluster formation and for deciding on
the number of clusters present. Measures with
a minimum variance flavor are popular and all
generally produce the same good results when
the clusters are compact and well separated.
When the clusters are close together, or
overlap, the performance degrades rapidly arag
the results become increasingly sensitive :0

the criterion or metric employed. ir }r
To place the probtem in perspective. a o ‘-?
qualitative analysis based on identicaily 0
distributed Gaussian clusters shows that both
the hierarchical tree approach to clustering 0
(partitioning) described in Section I, and ,n
simplified criterion for determining the number
of clusters, ¢, perform well for separatigns of
the cluster centers on the order of ¢ s v 12 g
]
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A possible criterion for determining ¢ s to
m:nimize

[+

2 2
s =glc)s, =g(c) PIED

2
Fy Toa b Hfl. (12)

where g(¢) is a monotonically increasing
function of ¢. On the other hand, when the
centers are very close together, d < Vl2/n g,
smaller estimation errors result by assuming
one cluster even when two or more clusters are
present, At this point, separation of the
clusters is no longer reasonable. Consequentiy,
it is noted that much research on this subject
i1s directed at achieving efficient techniques
that w in th approximate range

d/c =~N12/n to V12, see Fig. 4. It is reported
that use of mixture density ML technigues [6]
extends the limits of reasonabie performance
oy approximately 3 3%_ 1.8., down to separations
on the order of d = c. Currently, separation
below this level is questionable and at best
sensitive 0 a priori modeis and dependent on
data rich environments. Therefore, we restrict
the scope of this paper (o the consideration of
ciuster separations that permit tnhe
agglomerative hierarchical methods of Section
I 1o tuse data from angle-of-arrivai sensors.
it 1s noted that divisive techniques (cluster
sphitting) are avaudable to refine the results.
Here, dimensionality reduction to one
gimension is achieved by projection pursuit or
by projections onto the dominant eigenvector of
the resulting scatter matrix of the. formed
cluster, These projections can be used to
efficiently ccmpute new trial partitions of the
agglomeratively formed clusters to maximize
the mixture likelihcod (6). Use of the estimate,
x;,. to initialize maximum likelihood estimation
aljgorithm has aiso been suggested. Howaever,
‘ittle change in the estimates is expected for
widely separated clusters and degradation of
the information content of the data (due to the
nonassociated nature of the data (5]) occurs
wnen the clusters overlap.

This paper extends the resuits of the
single-contact trajectory estimation problem
with  segmented data (3] to the
multisensor-multicontact problem. In the
application to trajectory estimation from
angle-of-arrival data the measurements, a;, are
a nonlinear function of the state of the body
under observation. i.e., a; = a (x). Similar to the
single-contact problem 3], far the
multisensor-multicontact problem, we seek
the x;such that

c
02 X X

2
. A Ha,- a(xi) i|Fi (13)
=1 aeA,

$ minimized.

vV EUSING ANGLE-CQF ARBIVAL DATA

The decision-directed approach s now

applied to the specific problem of estimating
trajectories from angle-of-arrival data in_ a
muitisensor-muiticontact environment. For
associated data, the estimation problem is
detailed in [3,7,8]. Data streams are locally
processed to extract (sufficient) statistics or
features. This reduced data set is then used o
represent the raw data at higher levels in
nierarchical approach for associating the
elements within this reduced data set. For
simplicity, contact motion is assumed to be
constant velocity while observer motion s
confined to constant veiocCity “legs® separated
by velocity shifts (maneuvers). Because of the
nature of the Dbearings-only observation
process, two independent data segments are
required for the contact trajectory to be
observable [3.7.8]. The association criteria
are based in the contact state-space and the
following procedure is employed:

‘Sufficient statistics, a;, are extracted by
locally processing segments of bearing data.

‘Primary cluster estimates, x. are formed
tfrom all combinations of indepbndent aata
segments taken two at a time.

‘These primary estimates serve as the
observations in the contact state-space used in
the clustering process described in section il
Because each primary observation requires wo
data segments, ingividuali data segments may
appear in more than one cluster. This s
minimized through selective ciuster pruning.

‘At each level of the hierarchical
procedura the cluster set is sorted and clusters
which appear as subsets of othars are removed.
Primary clusters whose segment sets are
divided: between two non-primary clusters
(consisting of more than two se?ments) are
also removed as pairings of assumed
non-associated segments. Pruning in this
manner greatly reduces the required number of
levels in the hierarchical procedure.

‘At each level of the tree, once two points
have been combined, ail segments associated
with the combined points are reprocessed 1t
refine the estimate by minimizing

cw2=2‘.

2 .
lay- a(x) i g (14"
aeA i

and the new information matrix is determined.
This new (weighted) cluster center and Fisher
matrix are used in the next step of the process.

*This process continues until the
astimated number of clusters is declared. At
this pgint some data segments may appear in
more than one cluster presenting a conflict in
association. Due to the sequential nature of the
tree it is also possible for a segment to be
wrongly assigned to one or mare clusters

*Contlicts are

resolved Dby iterativeiy




Jassigning segments to clusters based on
minimizing the contribution to the residual
error (13).

*‘The resulting (weighted) cluster centers
are the estimated states or trajectories of the
contacts. Confirmation of a contact is not
possible when a cluster contains only two data
segments.

1v.  EXPERIMENTAL RESULTS AND COMMENTS

Experiments were conducted on simulated
data. The test scenario is éwen in Fig. 5 where
there are a totali of nearly stationary
contacts being tracked. There are 5 observer
"legs" along the path O-A-O-B-O-C: data are
received on all contacts on the first leg., the
first four contacts on the second leg, the first
three on the third, etc. This provides a total of
15 segments of bearing data for fusion. A
nominal zero-mean white gaussian noise IS
added to the bearing measurements. All
astimates are formed at initial time, and range
'S normalized to the true rangn. Three separate

test runs are presanted: case ! with all tive -

contacts present, case |l with contacts 1.2.3,
and case lil with contact 1 alone.

Fig. 6 is a scatter piot of the primary
clusters for case | where estimates which
violate an upper-bound speed constraint have
been pruned. This represents the first level in
the nhigrarchical tree. As weighted nearest
neighbor clusters are grouped and the cluster
sets that appear as subsets of others are
pruned, the total number of clusters is reduced.
Fig. 7 is a scatter plot ot the set of cluster
centers at the 8th level of the tree. Fig. 8 is
tor the 11th level, where the number of
segments associated with each cluster center
is also indicated. The total residual power
versus the number of clusters is shown in Fig.
9. Behavior of the residual power in the
vicinity of the correct vaiue of ¢ may be
explcited aiong with other clues or critera to
estimate C. in this experiment the criterion
used for estimating the number of clusters was
simply to minimize (12) with g(c) = c. Plots of
this function versus the number ot clusters are
ailso shown in Fig. 9. While this criterion is
appealing for its intrinsic simplicity, improved
performance requires a more refined technique
such as use of the mixture density (6). Using
this criterion, good resuits were obtained in
cases | and i. However, two closely-spaced
clusters were estimated for case lll. where
only a single contact was present, due to the
increase in residual power when a single
cluster is formed. This effect was dependent
on the particular noise sequence. ig. 10
illustrates the clustering for all three cases
after the iterative optimization of the segment
assignments. No change is made in the
estimated number of clusters, and segments
are simply reassigned as necessary to remove
contlicts. It is important to note that the
fourtn and fifth contacts n the case |

scenario reprasent unconfirmable (with only
'wo data segments associated to it) and
unobservable (only a single segment associated
with it} contacts, respectively. In this case,
clusterings for contacts 1,2 and 3 represent
confirmed contacts, where the number of data
segments assigned to each cluster is as
indicated on the figure.

While the approach taken is direct, a
certain elegance may be found in that decisions
on the association of data segments with
contacts are not made until it is necessary to

do so. The observability problems, of using
bearings-only data require the formation of a
primary observation set prior to

implementation of the clustering procedure.
However, through selective pruning at each
level of the hierarchical tree. the observation
set is quickly reduced by removing subset and
"illegal®™ states. Thus, while the primary
observation set may be quite large, the
hierarchical tree quickly converges. The
subsequent evaluation, on a segment by
segment basis, of the residual power
contribution of each segment to each cluster
permits resolution of any conflicts as well as
optimizing the segment assignment.
Performance of this optimization phase is
dependent on the proper estimation of the
numper of contacts prasent, and further work is
required in this direction. When the number of
clusters is correctly estimated, the clustering
generated by the tree is generau{ quite good
and needs little refinement, owever, the
construct -of the tree - does aliow conflicting
segment assignments and resolution of these is
still necessary.
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